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Highlights  Abstract  

▪ Primary suspension damper failures affect 

vehicle dynamics. 

▪ Detection of damping reduction is based on the 

analysis of acceleration signals in frequency 

domain. 

▪ Artificial neural networks of different number of 

hidden layers were applied to accelerations’ 

PSDs. 

▪ ANNs training process was a difficult task, 

resulting in fault detection rate below 63%. 

 

 The aim of the study was to investigate rail vehicle dynamics under 

primary suspension dampers faults and explore possibility of its 

detection by means of artificial neural networks. For these purposes two 

types of analysis were carried out: preliminary analysis of 1 DOF rail 

vehicle model and a second one - a passenger coach benchmark model 

was tested in multibody simulation software - MSC.Adams with use of 

VI-Rail package. Acceleration signals obtained from the latter analysis 

served as an input data into the artificial neural network (ANN). ANNs 

of different number of hidden layers were capable of detecting faults for 

the trained suspension fault cases, however, achieved accuracy was 

below 63% at the best. These results can be considered satisfactory 

considering the complexity of dynamic phenomena occurring in the 

vibration system of a rail vehicle. 
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1. Introduction 

The problem of vehicle-rail interaction has been an important 

issue practically since the beginning of rail transport. The 

implementation of suspension in the design of the first 

locomotives and wagons made it possible to increase speeds, 

passenger comfort and freight weight, what in turn began 

improving running characteristics and reducing track loading. 

Over the years, rail vehicle suspensions have become 

increasingly sophisticated mechanical systems that allow the 

wheelsets to be properly guided in the track, ensure good 

running smoothness in tracks with irregularities along with 

transmitting traction and braking forces. The properties of the 

suspension have a major influence on the dynamic behavior 

which is examined particularly rigorously for approval testing of 

the vehicles before gaining authorization for placing on the 

market. Improper selection of stiffness and damping, as well as 

incorrect geometric sizing of constraint elements may result in 

the generation of excessive lateral contact forces, high values  

of derailment quotient and unacceptable accelerations. 

Consequently, such a vehicle will not only be unsafe for the 

passengers or the transported goods, but may also have  

a destructive effect on the tracks. Suspension components are 

subject to wear and random failure, e.g. due to overloading, 

degrading ride comfort, dynamic performance and in extreme 

conditions leading to derailment [28]. Not all types of damages 

to suspension components may be noticed during routine and 

scheduled inspections, such as broken coil/leaf springs and their 

corrosion, cracks of rubber-metal spring, leaking dampers, 

mounting freeplays, etc. Especially, due to the complexity  

of a hydraulic damper design its condition can be particularly 

difficult to assess when there are no operating fluid leaks or other 

external damages. Thus the only reliable way to determine the 

condition of a possibly faulty hydraulic damper is to examine it 

on a special test stand and compare its characteristics to a model-

specific benchmark. These characteristics usually include: 
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maximum damping force at tension and compression, as well as 

hysteresis loop, damping force vs working stroke. Not all rolling 

stock operators or repair facilities possess this type of 

equipment, what may result in the defective component only 

being replaced during an inspection in which the bogie 

undergoes a major repair. Implementation of condition 

monitoring is regarded as a possible way of detecting suspension 

faults of the rail vehicles’ running gears. Such the systems may 

support preventive maintenance systems leading to increase of 

the vehicles’ reliability, availability, safety and allow prediction 

of future technical condition.  

The aim of the presented study was to investigate the 

feasibility of damper faults detection by means of artificial 

neural networks (ANN) of different number of hidden layers 

applied solely to vibration signals’ spectra obtained from 

multibody simulation. The fault detection method based on 

ANNs could be further implemented in the condition monitoring 

system. Moreover, the paper analyses numerically the effects of 

loss of damping on rail vehicle dynamics.  

2. Rail vehicles’ suspension fault detection methods – state 

of the art 

Rail vehicle suspension fault detection methods are part of  

a broad Fault Detection and Idnetification (FDI) techniques and 

have been intensively developed since mid-2000s. Most of the 

literature on the subject matter proposes model based methods 

supported with a state observer. Essentially those methods 

involve comparing the actual system’s measured response to an 

input with the response obtained (estimated) from the 

mathematical model with predefined geometric, inertial, 

stiffness and damping parameters. The difference between those 

two responses, the so-called residual, is generated and on the 

basis of its value the system’s condition is inferred. Some of the 

earliest papers on the model-based methods were by Li and 

Goodall. They made use of Kalman filter (KF) [20] and Rao-

Blackwellised Particle Filter [20] in order to estimate the state 

of the plant represented by a matrix of suspension and inertial 

parameters of the second order differential equations governing 

vehicle dynamics. Kalman filter was also used by Tsunashima et 

al. in the multiple-model approach [9]. Wei et al. applied KF to 

generate the residuals for fault diagnosis and processed the 

results using Dempster-Shafer evidence theory [35]. Another 

version of KF - cubature Kalman filter – has been recently 

implemented for suspension fault detection by Zoljic-Beglerovic 

et al. [43]. Liu et al. [22] presented a model-based strategy for 

condition monitoring of suspensions in a railway bogie. This 

approach is based on the recursive least-square (RLS) algorithm 

focusing on the ‘Input-output’model. 

The model-based methods require aforementioned vehicle 

parameters. Already at the modelling stage, simplifications, 

including linearization, are introduced that may limit the 

effectiveness of these methods. In addition, access to the 

required parameters could be problematic as the vehicle and 

components manufacturers may not provide such detailed 

information. In parallel to the model-based methods a signal 

processing approach has also been developed. Mei and Ding 

[24] presented a new technique evaluating dynamic interactions 

between different vehicle modes caused by component failures 

in the suspension system. Wei et al. [36] considered vertical 

damper fault and vertical spring fault detected by the Dynamical 

Principle Component Analysis (DPCA) and Canonical Variate 

Analysis implemented on acceleration signals acquired from 

simulation. Sorribes-Palmer et al. [32] developed a fault 

detection technique which is based on the acoustic emissions 

variation due to structural modal coupling changes in the 

presence of faulty components. Sakellariou et al. [30] trained 

FDI unit basing on measurement signals obtained from the 

physics-based vehicle model in the baseline phase, subsequently 

it achieved fault diagnosis in the inspection phase using the 

advanced functional model based method (FMBM). 

Furthermore, they implemented stochastic ARX-type models to 

represent a system in a faulty state. Fault detection by analysis 

of distance in a diagnostic space made up of selected statistical 

parameters of acceleration signals is presented in [26]. Dumitriu 

[4] investigated the possibility of developing a new method for 

fault detection of a damper in the primary suspension of the 

railway vehicle, based on the analysis of the vertical vibration’s 

response of the bogie, regarding the RMS accelerations 

measured/simulated in four reference bogie points. Also 

Dumitriu in the previous work [5] proposed a method to detect 

the failure of the damper in the primary suspension of the rail 

vehicle, based on the analysis of cross-correlation of the vertical 

accelerations measured on the bogie frame against the two axles. 

Due to successful operation in various branches of 

engineering, machine learning techniques have also been 

applied to the problem of suspension fault detection. Hu et al. 

[12] adopted the deep neural network to recognize faults in 

bogies: failure of the lateral damper, anti-yaw damper, air 

springs and combination of failures of these elements. Karlsson 

et al. [15] computed frequency response functions among 

acceleration signals in the carbody, bogie frames and axles, 

which served as fault indicators, fed to the classification 

algorithms – the linear Support Vector Machine and 1-Nearest-

Neighbour. Ankrah [1] built a supervised machine learning 

model to predict faulty and healthy state of the suspension 

system components, based on support vector machine (SVM). 

They also developed a new SVM model to predict faults on the 

test data containing acceleration obtained from simulation 

scenarios. Dai et al. [3] used neural network model that describes 

the characteristics of the hydraulic damper, such as oil leakage, 

the internal friction force and the percentage of entrapped air in 

oil. The responses and the dynamic parameters of the hybrid 

neural network model were calculated and compared with the 

experimental results by considering various exciting amplitudes 

and frequencies. A 1D convolution network-based fault 

diagnostic method for high speed train suspension systems was 

designed by Ye et al [39]. In order to improve the robustness of 

the method, a Gaussian white noise strategy for immunity to 

track irregularities and an edge sample training strategy for 

immunity to wheel wear were proposed. Ren et al. [29] 

considered detection of lateral and yaw damper failures by 

means of a novel 1D-ConvLSTM time distributed convolutional 

neural network (CLTD-CNN). Wu et al. [38] proposed 

synchrony group convolutions to construct a fault diagnosis 

scheme for we propose synchrony group convolutions for  

a high-speed train bogie. The examined five categories of faults: 

air spring fault, wheel-box spring fault, lateral damper fault, yaw 

damper fault, and vertical damper fault. 
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3. Preliminary analysis of damper failure 

The general effect of damping decrease is firstly demonstrated 

by analysing frequency response of the 2-axle HSFV1 goods 

wagon. This type of wagon has been chosen due to its running 

gear with a single suspension-level and the use of hydraulic 

dampers which are typically installed in passenger vehicles 

rather than in goods wagons. The bogie-less design of the 

running gear allows representing this type of wagon by means 

of a simple 1 DOF quarter vehicle model, depicted in Fig. 1. The 

model consists of quarter of a body mass  𝑚𝑏 =  7500 𝑘𝑔 

(unloaded) connected with half of a wheelset of mass 𝑚𝑤 =

 1196 𝑘𝑔 by means of a spring and a dashpot with constants 

𝑘 =  4.1 · 106 𝑁/𝑚 and 𝑐 =  28 · 103 ∙ 𝑁𝑠/𝑚 respectively 

[40]. 

 
Fig. 1. Quarter rail vehicle model (bogie-less). 

Frequency response of the body mass acceleration 

(acceleration gain) is derived analytically basing on the equation 

of motion (1). The notation is adopted from [27]. 

𝑚𝑏�̈� + 𝑐�̇� + 𝑘𝑧 = 𝑐ℎ̇ + 𝑘ℎ  (1) 

Harmonic excitation ℎ of the wheel mass 𝑚𝑤 and response 

𝑧 of body mass 𝑚𝑏 are given by equation (2): 

ℎ = ℎ̂𝑒𝑗𝜔𝑡 , 𝑧 = �̂�𝑒𝑗𝜔𝑡  (2) 

where ℎ hat and 𝑧 hat are complex amplitudes.  

Substituting (2) into (1) yields: 

(−𝑚𝑏𝜔2 + 𝑗𝑐𝜔 + 𝑘)�̂� = (𝑗𝑐𝜔 + 𝑘)ℎ̂  (3) 

thus body acceleration gain is: 
�̂̈�

ℎ̂
= 𝜔2 𝑗𝑐𝜔+𝑘

−𝑚𝑏𝜔2+𝑗𝑐𝜔+𝑘
   (4) 

Wheel dynamic load Fzdyn (Fig. 1), neglecting wheelset and 

body weight, is:  

𝐹𝑧𝑑𝑦𝑛 = 𝑚𝑤ℎ̈ + 𝑚𝑏�̈�   (5) 

hence wheel dynamic load gain is expressed as: 
�̂�𝑧𝑑𝑦𝑛

ℎ̂
= −𝑚𝑤𝜔2 − 𝑚𝑏𝜔2 𝑗𝑐𝜔+𝑘

−𝑚𝑏𝜔2+𝑗𝑐𝜔+𝑘
 (6) 

The damper failures in the considered case are expressed  

as a percentage of nominal damping 𝑐𝑛𝑜𝑚, i.e. 75% 𝑐𝑛𝑜𝑚, 50% 

𝑐𝑛𝑜𝑚 and 10% 𝑐𝑛𝑜𝑚. It is evident that, if excitation frequency 

matches mass’ natural frequency, body acceleration and wheel 

dynamic load abruptly increase, especially for 𝑐 =  10% 𝑐𝑛𝑜𝑚. 

Unfortunately, for the purpose of fault detection, frequency 

response of vehicle with 𝑐 =  75% 𝑐𝑛𝑜𝑚  and 50% 𝑐𝑛𝑜𝑚  are 

much less distinguishable from the response of the vehicle in 

healthy condition (Fig. 1a). The 90% decrease in damping has 

also its negative effect on track since wheel dynamic load gain 

is heavily increased (Fig. 2b). 

In normal operation excitation frequency is a combination of 

vehicle variable speed and different wavelengths of rails’ 

irregularities, as well as track geometry and other track 

imperfections (e.g. variable track vertical stiffness). 

Furthermore, in a real rail vehicle other factors contribute to the 

magnitude of frequency response, e.g.: inertial forces, vibration 

coupling of different vehicle’s masses, wheelsets’ out-of-

roundness, variable vehicle mass and aerodynamic loads. Thus 

it is difficult to develop a suspension fault detection method for 

the condition monitoring system that could deal with variable 

operating conditions and would be robust to the random 

disturbances causing dynamic responses of the vehicle as if its 

suspension elements were damaged.  

4. Full rail vehicle model 

Simulation analysis of full rail vehicle dynamics was carried out 

in a multibody environment MSC.Adams with use of rail 

package VI-Rail. For the purpose of the study a benchmark 

model of a typical 4-axle passenger coach was chosen [13]. The 

built model belongs to the group of the so-called low-frequency 

models. It is assumed that the upper limit of the low-frequency 

vibration range is 30–50 Hz. Inertial objects of the vehicle 

performing low-frequency vibrations behave as rigid bodies, 

which allows us to assume the rigidity of the main components 

of the vehicle model – the body, bogie frames and wheelsets. 

Those elements are connected by linear, massless springs, 

dampers and joints. Forces from the bogie are transmitted to the 

carbody via traction rod. The model does not have yaw dampers.  

 

         
Fig. 2. Body acceleration gain (a) and wheel dynamic load gain (b) for different excitation frequencies and damper conditions. 

The main parameters of the model are presented in Tab. 1.  
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Tab. 1. Main passenger coach model parameters. 

Parametr Value 

Geometry and masses  

Bogie pivot spacing 19 m 

Bogie wheelbase 2.56 m 

Wheel radius 0.46 m 

Wheelset mass 1813 kg 

Bogie mass 2615 kg 

Body mass 32000 kg 

Primary suspension stiffness  

Longitudinal  31391 kN/m 

Lateral  3884 kN/m 

Vertical  1220 kN/m 

Primary suspension damping  

Longitudinal damping  15 kNs/m 

Lateral damping  2 kNs/m 

Vertical damping  4 kNs/m 

Secondary suspension stiffness  

Longitudinal stiffness  160 kN/m 

Lateral stiffness 160 kN/m 

Vertical stiffness 430 kN/m 

Traction rod longitudinal stiffness (one per bogie) 5000 kN/m 

Secondary suspension damping  

Longitudinal damping (traction rod) 25 kNs/m 

Lateral damping 32 kNs/m 

Vertical damping 20 kNs/m 

 

The position of the rigid body’s mass centre is described by 

position vector 𝑝 of three coordinates 𝑥, 𝑦, 𝑧, of the Cartesian 

reference frame: 

𝑝 = [
𝑥
𝑦
𝑧

]    (7) 

Orientation of the body is described by means of three Euler 

angles: 𝜑,𝜒  consistent with the rotation sequence 3-1-3: 

𝜀 = [
𝜑
𝜒
𝛹

]    (8) 

The set of generalized coordinates associated with the i-th 

body is defined in ADAMS environment by vector q: 

𝑞𝑖 = [
𝑝𝑖

𝜀𝑖
]    (9) 

Joints connecting the solids are treated as constraints, which 

are imposed on generalized coordinates from 𝑞𝑖 to 𝑞𝑛. Taking 

into account time dependency of the considered multibody 

system, the constraints formula is: 

𝛷 = (𝑞, 𝑡) = 0   (10) 

ADAMS software generates automatically and solves 

equations of motion for individual inertial elements of  

a complex mechanical system. The dynamic behaviour of the 

elements of the system is described in ADAMS environment by 

means of a system of differential-algebraic equations derived 

from the Euler-Lagrange formalisms presented in a general form 

[23]: 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
+ Φ𝑞

𝑇𝜆 = 𝑄  (11) 

where: 

q - vector of generalized coordinates; 

L - Lagrangian (difference of kinetic and potential energy: L=T–

V); 

Φq - Jacobian matrix of constraints; 

λ - vector of Lagrange multipliers; 

Q - vector of external forces. 

Systems of nonlinear differential equations are solved by the 

ADAMS solver numerically, mainly using the Newton-Raphson 

method. The method of creep-force computation, implemented 

in the simulation software, is based on Kalker's FASTSIM 

algorithm [14]. The code uses actual wheel and rail profile and 

computes the actual contact kinematics at each simulation step.  

5. Track models 

The tracks of two different geometries have been used in the 

study, namely S-shaped curves and the model of the 

experimental track in Żmigród (Poland) which belongs to the 

Railway Institute [10]. 

The specific S-shaped curves consist of two inverse curves 

of radii R = 150 m and total length of ca. 100 m. This kind of 

track is used during the acceptance tests [6] for investigating 

safety against derailment under longitudinal compressive forces 

within trains.  

The model of the experimental track in Żmigród has total 

length of 7725 m. Its longitudinal profile is shown in Table 2 and 

its plan is depicted in Fig. 3.  

Vertical stiffness of both track models was assumed as 

infinite and rail profile was standard, unworn UIC60. 

Tab. 2 Experimental track profile. 
Distance [m] Description  

0056.595 - 0186.595 transition curve 

0186.595 - 1754.47 R=600 m, cant 0.15 m 

1754.47 - 1884.47 transition curve 

1884.47 - 1938.97 tangent section 

1938.97 - 2018.97 transition curve 

2018.97 - 2052.53 R=800 m, cant 0.09 m 

2052.53 - 2132.53 transition curve 

2132.53 - 2159.93 tangent section 

2159.93 - 2261.13 transition curve 

2261.13 - 2410.02 R=700 m, cant 0.115 m 

2410.02 - 2511.22 transition curve 

2511.22 - 3045.863 tangent section 

3045.863 - 3165.863 transition curve 

3165.863 - 6347.747 R=900 m, cant 0.1 m 

6347.747 - 6467.747 transition curve 

6467.747 - 7725.00 tangent section 

 

 
Fig. 3. Experimental track plan. 

Additionally, track irregularities were implemented in both 

track models. The height of the irregularities was generated from 

power spectral densities for vertical (𝑆𝑧𝑧) and lateral 

(𝑆𝑌𝑌) directions [7] according to the following formulas (12, 

13): 

𝑆𝑧𝑧 =
𝐴𝑣𝛺𝑐

2

(𝛺2+𝛺𝑟
2)(𝛺2+𝛺𝑟

2)
   (12) 
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𝑆𝑌𝑌 =
𝐴𝐴𝛺𝑐

2

(𝛺2+𝛺𝑟
2)(𝛺2+𝛺𝑟

2)
   (13) 

where: 

𝛺𝑐 = 0.8246 rad/m  

𝛺𝑟 = 0.0206 rad/m 

Av = 1.08 10-6 m rad 

AA = 6.125 10-7 m rad 

The generated irregularity waveform for each rail and 

direction consisted of 200 harmonics. Minimum wavelength was 

set to 5 m, whereas maximum to 1000 m, which determine the 

upper and the lower frequency limit of the PSD function 

respectively. Statistical values of the irregularities are presented 

in Tab. 3 and Tab. 4. According to the former classification of 

track quality levels described in UIC 518 leaflet [33], S-shape 

curve falls into good quality (QN1) in terms of absolute peak 

values for tracks with allowable speed ≤ 80 km/h. However, 

due to standard deviation of height of the irregularities, it can be 

classified as medium quality (QN2). Since the permissible speed 

on the second track is 160 km/h, its quality can be assessed as 

medium (QN2) considering the peak values of the height of the 

irregularities, while in terms of standard deviation, the quality of 

the track is poor (QN3). 

Tab. 3 Height of the track irregularities in S-shaped curves. 
Height (mm) Left Y Left Z Right Y Right Z 

Min. -5.28 -7.18 -3.31 -8.43 

Max. 3.32 8.58 5.28 6.80 

Standard dev. 2.58 4.14 2.58 3.70 

Tab. 4 Height of the track irregularities in experimental track 

model. 
Height (mm) Left Y Left Z Right Y Right Z 

Min. -10.10 -15.70 -11.00 -15.20 

Max. 11 14.7 10.10 15.30 

Standard dev. 3.06 4.44 3.06 4.28 

6. Rail vehicle dynamic behavior under primary 

suspension dampers faults 

6.1. Damper damage effect on rail vehicle dynamics 

Suspension damages or variation of suspension parameters and 

their effect on dynamic behavior of a rail vehicle have been 

investigated previously in various studies. In [25] the authors 

presented analysis of acceleration signals obtained during 

experimental tests of rail vehicles with introduced faults of 

primary and secondary suspension. Stationary tests of a wagon 

with leaf spring damages and analyses of recorded acceleration 

signals are described in [19]. The study in [34] focused on 

simulation of dynamic responses of a rail vehicle with nonlinear 

secondary suspension damper model differentiating its 

parameters. Numerical simulations of a rail vehicle with 

stochastic failure of dampers were performed for failure effects 

analysis on dynamical performance in [41].  

This section examines the dynamic behavior of the vehicle 

as a result of a 90% reduction in damping in the vertical direction 

at both wheels of the first wheelset. For that purpose simulation 

tests have been carried out in the S-shaped track. Initial speed of 

the vehicle was 50 km/h which can be considered as dangerous 

for the adopted track geometry. The excessive speed was chosen 

because the viscous damper generates a force that depends on 

the velocity of displacement of the piston rod. In the case of 

sudden changes in load acting on the vehicle, the effect of the 

damping is more noticeable compared with riding at lower 

speeds and in curves of greater radii, when the loads acting on 

the vehicle are much less significant. The adopted measures of 

vehicle’s dynamic behavior are the following quantities: lateral 

forces, 𝑌/𝑄 ratio and wear number, all related to the left and 

right wheel of the first wheelset. Quotient of lateral force to 

vertical force is calculated basing on Nadal’s criterion and 

assesses the risk of flange climb derailment [16, 17]. Formula 

(14) is derived from the static equilibrium of wheel’s lateral 

force Y and vertical force 𝑄 acting on a rail (Fig. 4). 

 
Fig. 4. Forces acting on a wheel flange. 

𝑌

𝑄
=

tan 𝛽−𝜇

1+𝜇 tan 𝛽
   (14) 

where: 𝛽 - flange angle, µ - friction coefficient between wheel 

and rail 

The wear number (Wn) is based on 𝑇-gamma energy model, 

whose assumption is the proportional relationship between the 

amount of worn material and the dissipated energy in the wheel-

rail contact zone. It is equal to the sum of products of wheel-rail 

longitudinal Fx and lateral Fy creep forces, and wheel creepages 

γx and γy (15): 

𝑊𝑛 = 𝐹𝑥𝛾𝑥 + 𝐹𝑦𝛾𝑦  (15) 

The result of the simulation in the 𝑆-curve are presented in 

the form of percentage changes of minimum, maximum, 

standard deviation and mean value of the measured quantities 

(Fig. 5 - Fig. 7). In this specific track, the measured quantities 

show changes due to damping reduction. For the left wheel, the 

mean values are increased, while for the right wheel they are 

reduced. The variations of extreme values (min, max) are more 

apparent, however, they do not contribute much in the entire 

ride, since the changes of mean values are lower than the 

changes of the extremes. 

 
Fig. 5. Percentage change of lateral force on the left and 

right wheel of the first wheelset in the S-shaped curve, v = 50 

km/h. 
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Fig. 6. Percentage change of Y/Q quotient on the left and 

right wheel of the first wheelset in the S-shaped track, 𝑣 = 50 

km/h. 

 
Fig. 7. Percentage change of wear number on the left and 

right wheel of the first wheelset in the S-shaped track, v = 50 

km/h. 

6.2. Simulation on the experimental track 

Simulation of the passenger coach dynamics on the experimental 

track model was carried out in order to provide input data for 

training the artificial neural network. The tests were performed 

for different configurations of primary suspension damper 

failures which are placed in Tab. 5 as simulation scenarios. The 

convention of identifying faults is: #X, where # is a number 

referring to the wheelset, X refers to left of right side of the 

vehicle. Damping values in scenario 8 has been chosen arbitrary. 

The simulation tests were performed for two speed values: 100 

km/h and 160 km/h - maximum permissible speed on the 

experimental track. 

Tab. 5 Simulation scenarios, L - left wheel, R - right wheel. 
Scenario Faults 

Sc1 All dampers nominal 

Sc2 1L - 75% cnom 

Sc3 1L - 50% cnom 

Sc4 1L - 10% cnom 

Sc5 1L, 1R - 75% cnom 

Sc6 1L, 1R - 50% cnom 

Sc7 1L, 1R - 10% cnom 

Sc8 

1L - 50% cnom 

1R - 75% cnom 

2L - 50% cnom 

2R - 10% cnom 

3L - 75% cnom 

3R - 50% cnom 

4L - 10% cnom 

4R - 10% cnom 
 

Acceleration signals were recorded, in vertical and lateral 

direction, in the points of the vehicle specified in the railway 

standard [6], i.e.: 

• axleboxes, 

• bogie frames - above wheels, 

• carbody - above bogie’s center. 

which contribute to the total of 36 channels. 

Due to the various track geometry, for the purpose of the 

analysis, the recorded data were divided into parts according to 

the following sections covering the distances: 

• section 1: 0 - 1861 m, 

• section 2: 1862 - 2141 m, 

• section 3: 2142 - 2527 m, 

• section 4: 2528 - 3031 m, 

• section 5: 3032 - 6483 m, 

• section 6: 6484 - 7725 m. 

Prior to analysing the acceleration signals, it is first 

important to study the effect of damping detuning on the 

eigenvalues of the wagon model. This analysis determined the 

sensitivity of the model to the change of damping parameters, 

and thus the degree of difficulty of suspension damage detection. 

In this case the considered damage was 90% reduction (c = 10% 

𝑐𝑛𝑜𝑚) of damping of both wheels of the first wheelset. As it can 

be seen in Fig. 8, values of the real part of eigenvalues 

(corresponding to damping) are only slightly affected by 

dampers faults, however, the number of eigenvalues in the case 

of faulty dampers increased by 1 (68 vs 69). This fact may 

indicate occurrence of a new mode shape due to vibrations 

coupling. Apart from that extra mode shape, all other 

eigenvalues of faulty vehicle practically overlap eigenvalues of 

the vehicle in nominal condition, thereby detection of 

suspension faults would be very difficult basing on dynamic 

responses of the model. 

a) 

 
b) 

 
Fig. 8. Rail vehicle model’s eigenvalues real part (a) and 

imaginary (positive values) part (b). 
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Analysis of acceleration signals obtained from simulation 

was carried out on the basis of estimated power spectral densities 

(PSD) by means of Welch’s periodograms [31, 37]. Fig. 9 - Fig. 

14 present PSD of the recorded acceleration signals on the left 

axlebox of the first wheelset, on the bogie frame above the left 

wheel of the first wheelset and on the carbody above the center 

of the leading bogie. The simulation results presented herein 

correspond to the same fault as in the case of eigenvalues 

analysis. It can be concluded on the basis of these figures that 

distribution of PSD values changes over the entire spectrum and 

the effect of damping reduction is much more difficult to extract 

compared with 1 DOF model. Due to the complexity of the full 

rail vehicle model, vibration modes couplings occur, impeding 

diagnostic inference. However, damping detuning in vertical 

direction of primary suspension has virtually no effect on 

vibrations recorded on the carbody in the analysed model. 

Another feature making damage detection difficult is the low 

sensitivity of the vehicle model to damping detuning. From Fig. 

9-10 and Fig. 12-13 it is evident that acceleration signals differ 

substantially due to speed and considered track section rather 

than as a result of damping decrease. For instance, the PSD 

values of the acceleration signals recorded on the bogie frame 

for v = 160 km/h (Fig. 13a and Fig. 13b) differ by an order of 

magnitude compared to the PSD values of the signals recorded 

for v = 100 km/h (Fig. 10a and Fig. 10b).  

This marginal differences of PSD values from nominal and 

damaged vehicle lead to the conclusion that fault detection 

method based on the analysis of signal’s statistical parameters 

values only (including PSD values) will not be fully effective. 

a) 

 
b) 

 
Fig. 9. Axlebox vertical acceleration obtained from section 

1 (a) and section 6 (b), v = 100 km/h. 

a) 

 
b) 

 
Fig. 10. Bogie frame vertical acceleration obtained from 

section 1 (a) and section 6 (b), v = 100 km/h. 

a) 

 
b) 

 
Fig. 11. Carbody vertical acceleration obtained from section 

1 (a) and section 6 (b), v = 100 km/h. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 1, 2023 

 

a) 

 
b) 

 
Fig. 12. Axlebox vertical acceleration obtained from section 

1 (a) and section 6 (b), v = 160 km/h. 

a) 

 
b) 

 
Fig. 13. Bogie frame vertical acceleration obtained from 

section 1 (a) and section 6 (b), v = 160 km/h. 

a) 

 
b) 

 
Fig. 14. Carbody vertical acceleration obtained from section 

1 (a) and section 6 (b), v = 160 km/h. 

7. Fault detection by Artificial Neural Networks 

7.1. Artificial Neural Networks configuration 

This study proposes the use of artificial neural networks (ANN) 

to solve the problem of primary suspension damper fault 

detection. A typical ANN consists of three layers: input, hidden 

and output. When dealing with complex problems, such as 

image classification or speech recognition, deep neural networks 

(DNN) are often employed [18]. DNN is basically an ANN with 

multiple hidden layers between input and output layer. ANN and 

DNN are used in the following study for the classification 

problem. Due to the rail vehicle model’s low sensitivity to 

damping detuning, it is very difficult to determine exact or even 

approximate magnitude of the fault. Hence, only the vehicle’s 

condition categories have been arbitrary attributed to the 

considered suspension faults as depicted in Tab. 6. 

Tab. 6 Condition categories attributed to the considered 

suspension faults. 
Condition 

category 

Attributed condition 

label 
Fault 

0. Good condition 

• All dampers nominal 

• 1L - 75% cnom 

• 1L, 1R - 75% cnom 

1. Minor fault 
• 1L - 50% cnom 

• 1L, 1R - 50% cnom 

2. Average condition 1L - 10% cnom 

3. Poor condition 1L, 1R - 10% cnom 

4. Serious fault 1L - 50% cnom 
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Condition 

category 

Attributed condition 

label 
Fault 

1R - 75% cnom 

2L - 50% cnom 

2R - 10% cnom 

3L - 75% cnom 

3R - 50% cnom 

4L - 10% cnom 

4R - 10% cnom 

 

PSD of acceleration signals fed to the neural networks have 

been normalised, hence there would be no discrepancy among 

PSD maximum values obtained from runs on tracks of different 

condition or different vehicles’ payloads. The task for the neural 

network in this classification process would be extraction of 

relations among normalised PSD values over analysed spectrum 

range. In order to reduce dimensionality of input data, PSD of 

acceleration signals were decimated and their range reduced to 

20 Hz. Data were divided into bins covering 0.22 Hz intervals. 

Height of the bin equals to the mean value of the samples located 

in the bin. One analysed file obtained from simulation contained 

a matrix of the resampled PSD signals of size 91 x 36, what gives 

3276 nodes in the input layer. 

In the process of training artificial networks, the training data 

consisted of matrices relating to the track sections no. 1 - 4, 

whereas the validating data consisted of matrices of signals 

acquired from section no. 6. The model was tested on data from 

section no. 5.  

ANN were built using Keras library [11]. Three architectures 

of ANN were tested for suspension fault detection, namely: with 

one, two and three hidden layers, whose nodes number were 

determined by the following formula (16): 

1st =
(91 ∙ 36)

2
= 1638 

2nd =
(91∙36)

8
= 410   (16) 

 3rd =
(91 ∙ 36)

48
≅ 68 

The number of the nodes of the output layer corresponds to 

the identified suspension conditions for the 8 simulation 

scenarios from Tab. 3. The outcomes of the output layer were 

condition categories from Tab. 4. The hidden layers neurons are 

activated by rectified unit activation function (𝑅𝑒𝐿𝑢): 

𝑅𝑒𝐿𝑢(𝑢) = max (𝑢, 0)  (17) 

Since the result of the ANN is assumed to be a categorical 

label, the loss function is cross entropy between label classes. 

The purpose of loss functions is to compute the quantity that  

a model should seek to minimize during training [11]. Softmax 

activation function, denoted hereinafter as σ, is implemented in 

the output layer which converts a vector of values u to  

a sequence of probability values, thus making it useful for 

multiclass classification problems [2]: 

𝜎(𝒖)𝑖 =
𝑒𝑢𝑖

∑ 𝑒
𝑢𝑗𝐾

𝑗=1

   (18) 

for 𝑖 =  1, … , 𝐾 𝑎𝑛𝑑 𝒖 =  (𝑢1, … , 𝑢𝐾)  ∈  ℝ𝐾  

In the learning process of ANNs the aim is to find weights 

vector w ∈ ℝm, what in turn can be considered as an 

optimization problem as defined in [8]. The optimal weights w* 

 𝒘∗ = arg min
𝒘𝜖ℝ𝑚

{𝑓(𝒘) =
1

𝑁
∑ 𝑓𝑖(𝒘)𝑁

𝑖=1 }  (19) 

where: f : ℝm → ℝ is the loss function, fi, for i ∈ {1, …N}, 

denotes the contribution to the loss function from data point i, N 

denotes the total number of data points [8]. The optimization 

algorithm implemented for the purpose of ANN training was 

stochastic gradient descent [42]. 

8. Results of fault detection by ANNs 

During training the network, the normalized results of 

simulation tests for both travel speeds were used combined. The 

validation data were the results obtained for the 6th track section. 

Training the network using the obtained results was difficult, and 

after increasing the number of epochs to 1000, a relatively low 

accuracy at the end of training of c.a. 0.5-0.6 was achieved. 

Increasing the number of epochs to over 1000 did not improve 

accuracy, and carried the risk of overtraining the network. 

Tab. 7-9 present the results of the rail vehicle suspension 

condition assessment by ANNs of different configurations. 

Additional description is provided - if the ANN result is the same 

as the actual condition then it is tagged ‘Match’. The tag 

‘Oversest.’ refers to the case when the actual condition is 

overestimated by ANN, i.e. when the dampers faults are not as 

severe as they actually are (or no faults are present). Conversely, 

the tag ‘Underest.’ corresponds to the opposite condition. The 

accuracy is expressed as percentage of the ‘Match’ tags of the 

total number of simulation scenariors. 

Tab. 7 Fault detection results by ANN of 1 hidden layer. 
Scenario 

(Attributed 

condition) 

Sc1 

(0) 

Sc2 

(0) 

Sc3 

(1) 

Sc4 

(2) 

Sc5 

(0) 

Sc6 

(1) 

Sc7 

(3) 

Sc8 

(4) 

ANN result 
0 1 1 1 1 1 3 4 

Match Overest. Match Underest. Overest. Match Match Match 

Accuracy 62.5%        

Tab. 8 Fault detection results by ANN of 2 hidden layers. 
Scenario 

(Attributed 

condition) 

Sc1 

(0) 

Sc2 

(0) 

Sc3 

(1) 

Sc4 

(2) 

Sc5 

(0) 

Sc6 

(1) 

Sc7 

(3) 

Sc8 

(4) 

ANN result 
0 0 0 1 0 0 3 4 

Match Match Underest. Underest. Match Underest. Match Match 

Accuracy 62.5%        

Tab. 9 Fault detection results by ANN of 3 hidden layers. 
 

 

Sc1 

(0) 

Sc2 

(0) 

Sc3 

(1) 

Sc4 

(2) 

Sc5 

(0) 

Sc6 

(1) 

Sc7 

(3) 

Sc8 

(4) 

ANN result 
1 1 1 3 1 1 3 4 

Overest. Overest. Match Overest. Overest. Match Match Match 

Accuracy 37.5%        

 

The results obtained from ANNs of 1 and 2 hidden layers 

have the same accuracy of 62.5%, however in the case of 2 

hidden layers ANN underestimated dampers condition in three 

scenarios: Sc3, Sc4 and Sc6. Such the incorrect assessment is 

unacceptable from the point of view of further exploitation and 

safety. Although accuracy of ANN with 3 hidden layers is the 

lowest, it would provide the results that are not underestimated. 

It generated three false alarms for the following scenarios: Sc1, 

Sc2 and Sc5. Nonetheless, the discrepancy was not extreme as 

the actual and assessed conditions were different only by one 

category. The selection of proper number of hidden layers and 

their nodes should not be based solely on the adopted measures 

of accuracy, or the measures should include weights favouring 

‘overestimated’ tag (only by one category).  

The accuracy values show that the ANN training for 

suspension fault detection is a difficult task for the assumed 

inputs. However, in order not to generate too many false alarms 

the assessments should be carried out on data obtained from 

more than one track section. 
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9. Conclusions 

The suspension of a rail vehicle is a complex mechanical system 

whose correct online diagnosis is a difficult task due to the 

stochastic nature of the excitations and variable operating 

conditions. These excitations can cause dynamic responses of 

the vehicle which can mask responses due to damage of 

suspension components. Due to these difficulties, the paper 

investigated the possibility of detecting damage of primary 

suspension dampers using artificial neural networks. The use of 

neural networks was limited to damage detection and 

approximate assessment of the suspension condition, without 

indicating the exact location. 

The input quantities for the proposed method are values of 

acceleration signals recorded identically to that used for 

approval testing. Thus, the method does not impose additional 

requirements on the measurement process and the apparatus 

used. In addition, the input of mass-inertia parameters and 

characteristics of elastic and damping elements is not required, 

since the method is not based on a mathematical model of the 

vehicle, but only on the analysis of the recorded signals. 

For the tested neural network configurations and the 

considered faults, higher accuracy values were not achieved. In 

the case of the nets of 1 and 2 hidden layers, the damage was 

underestimated. In turn, the network with 3 hidden layers 

generated false alarms. However, the results of assessment by 

ANNs can be considered satisfactory considering the 

complexity of dynamic phenomena occurring in the vibration 

system of a rail vehicle. A possible way of decreasing number of 

false alarms should be sought in forming assessments made on 

the samples recorded on more than one track section. This 

approach could help mitigating random effects on acceleration 

signals, such as passing a railroad switch. 

Further research on the use of neural networks to detect 

suspension faults should focus on the extension of potential 

faults, various states of vehicle loading, different speeds and the 

use of other ANN architectures, e.g. convolutional neural 

network. Moreover, as a part of future work, PSD measure will 

be expanded and should be applied to data from actual 

measurements from the rail vehicles. 
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